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Abstraet-A constitutive theory is proposed, which possesses the possibilities or modelling all the
important features of the behaviour of frictional materials such as: inDuence of all three stress
invariants, coupling between deviatoric and volumetric response, dilatancy, softening, and dilTerent
behaviour in loading and unloading. The basic constitutive assumptions are relations between
properly def'med stress and strain rate invariants, from which the component equations are derived
by means ofa suitable reformulation. After the incremental stress-strain relations have been derived,
they are augmented by consistent loading/unloading criteria. Emphasis is given to a fundamental
discussion of the general properties of the theory proposed and it is shown to fulfil all the formal
requirements (causality, determinism, admissibility, form-invariance, continuity) that a properly
formulated constitutive theory must obey. Moreover, the theory contains a surprisingly large number
of classical as well as nonclassical theories as special cases. In particular, it contains formulations
ranging from nonassociated plasticity theory, associated plasticity theory, hypoelasticity to elastic­
fracturing theory.

INTRODUCTION

The construction of constitutive theories applicable for modelling the time-independent
behaviour of frictional materials like concrete, rock and soil represents an intriguing
problem, if all essential characteristics of the behaviour should be captured for general
nonproportional load histories including unloading. As a consequence, quite different
theoretical bases have been applied in the past in an effort to model the material behaviour,
e.g. nonlinear elasticity, hypoelasticity, plasticity, and endochronic theory.

In particular, plasticity models have been adopted when the unloading behaviour is of
importance. It seems, however, that the plasticity theory, by placing emphasis on the yield
surface, focuses on a feature that is only of secondary importance for frictional materials
which lack a well-defined yield surface. Moreover, as their theoretical basis is the change and
movement of complicated yield/potential surfaces and knowledge of the normal to these
surfaces, plasticity models tend to become quite elaborate and complex.

The starting point for the constitutive theory proposed in this paper is completely
different. First of all, we start with constitutive assumptions which reflect the incremental
stress-strain behaviour directly. Secondly, to be able to identify as simply as possible the
material functions involved, these constitutive assumptions relate appropriate stress rate
invariants and strain rate invariants. Thirdly, from these invariant expressions we are able to
obtain corresponding equations relating the components of the stress rate and strain rate
tensors. Then, finally, by taking advantage of the invariant expressions, these incremental
stress-strain relations are augmented by consistent loading/unloading criteria.

This paper is devoted to the derivation of this new constitutive theory. No attempt is
made to try to calibrate the theory to a specific material, but rather the general properties
and potential of the theory are investigated in detail with the time-independent behaviour of
frictional materials in mind, It turns out that all essential features of frictional material
behaviour can be captured within a rather simple concept and it is of considerable interest
that classical formulations ranging from nonassociated plasticity, associated plasticity,
hypoelasticity, and elastic-fracturing theory are contained in the theory proposed.

tOn leave from Rise National Laboratory, Engineering Department, 4000 Roskilde, Denmark. Permanent
address: Division of Structural Mechanics, Lund Institute of Technology, Boll 118, s-n100 Lund, Sweden.
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CONSTITUTIVE MODEL AT INVARIANT LEVEL

One of the essential points in the present formulation is that we start directly with a
relation between rates of stress invariants and rates of strain invariants. The following quite
general constitutive relation is postulated to hold for a material, which initially is isotropic

(I)

where the rate is denoted by means of a dot, and AI' A2, A3, B1, B2, and B3 are material
moduli that vary with the loading; all having the dimension of stress.

Employing usual tensor notation and letting aiJ denote the stress tensor, the octahedral
normal stress and shear stress are defined by

(2)

(3)

where the deviatoric stress tensor is defined by

(4)

Letting f.ij denote the strain tensor, the octahedral normal strain is defined by

(5)

In addition, we define the following two strain rate invariants by

(6)

(7)

where the deviatoric strain tensor is defined by

(8)

and where the use of egiven by eqn (6) was introduced by Resende and Martin[l].
It appears that the two strain rate invariants defined by eqns (6) and (7) bear similarities

to the second stress invariant to and the third stress invariant J3' respectively, where J 3 is
defined by

(9)

Tensile stress and elongation are considered positive quantities and, for convenience, we
shall restrict ourselves to small strains and displacements.

The postulated constitutive relation, eqn (1), becomes more apparent when some
simplified material models are considered. For linear elasticity we have Al = 3K, B2 = 2G
and A2 = A3 = B1 = B3 = 0, where K and G denotes the bulk and shear modulus,
respectively. Putting BI = B3 = A3 = 0 we obtain the invariant formulation of the elastic­
fracturing theory of Resende and Martin[t]. In concrete literature, nonlinear models based
on an octahedral formulation are often applied. In this case, cf. Gerstle[2], Scavuzzo et
a/.[3] and Stankowski and Gerstle[4], the octahedral shear strain rate Yo is used instead of e
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and the influence ofwis disregarded. Noting that eand Yo become identical for loading in the
Rendulic plane, in which two of the principal stresses are equal, the present invariant
relations bear similarities to these octahedral formulations. Moduli A2 and B1 can therefore
be interpreted as moduli reflecting the coupling between deviatoric loading and volumetric
response (and vice versa), characteristic for the behaviour of frictional materials. It will be
shown later that moduli AJ and BJ represent the influence of the direction of the deviatoric
loading, i.e. the third stress invariant.

CONSTITUTIVE MODEL AT COMPONENT LEVEL

Equation (1) defines the constitutive model in terms of invariants. It is obvious,
however, that if the model is to be of any use for general stress paths, equations must be
derived for all the stress and strain components that are in accordance with eqn (1). Whereas
this expression consists of two equations, six equations are needed to prescribe the relations
between the stress and strain components, so this step in the constitutive formulation is by no
means evident. However, it can be achieved by a suitable reformulation of the invariant
equations.

Modulus B2 is split into two parts, i.e.

(10)

where Bi can be considered as the elastic part corresponding to 2G and Bi represents a
correction term due to the nonlinear behaviour. Multiplying eqns (1h by To and using eqn
(10) we obtain

(11)

The different terms in this expression shall now be reformulated. Using eqns (3) and (6) we
have

(12)

Using eqn (12) in eqn (11) yields

(13)

Excluding the trivial case where sij = 0, two possibilities exist for fulfilling eqn (13). Noting
that Slj and the expression in parentheses can be interpreted as vectors, eqn (13) is satisfied
if the two vectors are normal to each other, or if the components of the expression in
parentheses are equal to zero. Equation (13) must hold in general, i.e. also for linear elasticity
for whichs1j = Bieljand the last term in parentheses is zero. Therefore, in this case we cannot
use the solution possibility that the two vectors are normal to each other. Consequently, to
satisfy eqn (13) for arbitrary loadings we are left with the other possibility, namely that all the
components of the expression in parentheses are equal to zero, i.e.

(14)

Consequently, the invariant eqn (1) has been reformulated so that we have derived the
component eqn (14). By multiplying eqn (14) by Slj the invariant eqn (1) follows directly.
However, even though the derivation of eqn (14) seems quite natural, it should be noted that
there does not exist a one-to-one relation between the invariant equation and the component
equations. In fact, different component equations can be envisaged all resulting in the same
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invariant equation. On the other hand, out of this spectrum of component equations we
should choose a system which is in accordance with general theorems and experiences within
the field of constitutive modelling. It will be shown later that eqn (14) fulfils such
requirements. Note in the first place that as Bi is equivalent to 2G, the first term on the right­
hand side of eqn (14) corresponds to the elastic response, whereas the second term causes the
nonlinear behaviour.

Equation (14) determines the deviatoric response. The volumetric response is still given
by eqn (1); however, similarly to eqn (10) we split the modulus A J into two parts, i.e.

(15)

where A~ can be considered as the elastic part corresponding to 3K and A~ represents a
correction term due to the nonlinear behaviour. Therefore, the volumetric response is
controlled by

(16)

where the first term on the right-hand side corresponds to the elastic response, whereas the
second term causes the nonlinear behaviour.

Disregarding for the time being differences in the loading and unloading behaviour,
eqns (14) and (16) determine the stress-strain behaviour completely.

CONSISTENT LOADING/UNLOADING CRITERIA

As the aim is to formulate a theory applicable to general loadings, we must augment the
stress-strain relations derived with criteria that distinguish loading and unloading. The
introduction of a loading/unloading criterion infers in general that different constitutive
equations are applied in the loading and unloading regions and that neutral loading
separates these regions. In this paper, it is required that an adopted loading/unloading
criteron must be consistent in the sense of Handelman et a/.[5J, implying that these
constitutive equations must be identical for neutral loading. In accordance with general
expectations, this requirement ensures that the response varies continuously for different
imposed loadings. With a view to later numerical applications, this continuity requirement is
also of essential importance for the establishment of a stable, convergent numerical scheme.

It is of significance that in frictional materials, nonlinearity can be caused by two
different types of loadings: volumetric or deviatoric loading. This suggests the introduction
of two corresponding loading/unloading criteria. In addition, these criteria should be
applicable to the deviatoric response, eqn (14), as well as to the volumetric response, eqn
(16). As the first term in each of these expressions corresponds to elastic behaviour, it seems
natural to relate the deviatoric and volumetric loading criteria to the remaining terms.

To achieve this objective we note that it is always possible to write the moduli appearing
in the nonlinear terms as A~ = A~c + A~c, BJ = B~ + B~, etc. Moreover, if it is assumed that
B~ = PJA~C, A~ = P2B~, etc. then the following decompositions result:

(17)

(18)

where PI and P2 are dimensionless functions, i.e. instead of the six nonlinear moduli AI' A2,

A3 , BI , B2,and B3 introduced initially we now deal with eight independent functions A~c, A~,

A3, B~, B'2, B3• PI' and P2'
Let us now define the "deviatoric" loading function by

(19)
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and the "volumetric" loading function by

Lv = fAicdeo+ fAi de + fA 3dW'

Using eqns (19) and (20) in the constitutive eqns (14) and (16), we obtain

1329

(20)

(21)

(22)

It is assumed that so-called deviatoric unloading occurs when Ld ~ 0 imply that in the
stress-strain relations we apply Bi = B'{ = Bi = O. For deviatoric loading, Ld ~ 0 applies
and the moduli Bi, B'{, and Bi can take arbitrary values in the constitutive equations.
Likewise, it is assumed that so-called volumetric unloading occurs when Lv ~ 0 implying
that in the stress-strain relations we apply At = Ai =Ai =O. For volumetric loading,
1.. ~ 0 applies and the moduli A1, Ai, and Ai can take arbitrary values in the constitutive
equations.

With the loading/unloading criteria suggested above, the stress-strain relations in the
loading and unloading regimes become identical during any neutral loading thereby
ensuring the continuity of the response. Thus, the constitutive equations given by eqns (14)
and (16) have been augmented by consistent loading/unloading criteria.

Note that Al and 'sc2 need not be constant moduli implying that the so-called
elastoplastic coupling, i.e. reduction ofunloading stiffness, characteristic for severely loaded
frictional materials, cf. Ref. [6], can be modelled.

It is of importance to observe that the loading/unloading criteria introduced have been
formulated in terms of strain rate quantities. Therefore, these criteria can be applied even
within a strain softening formulation. Moreover, it will be shown later that the loading
criteria can be interpreted also in the usual stress space inferring that neutral loadings given
by Lv = 0 and Ld = 0, in general, correspond to two different surfaces in the stress space. In
that respect, it is important to note that according to eqns (21) and (22), nonlinear deviatoric
and volumetric response follows if just one of the loading functions is activated.

TANGENTIAL STIFFNESS TENSOR

The material behaviour is determined by the component eqns (14) and (16). For
convenience, these expressions shall now be rewritten so that the tangential stiffness tensor
and thereby the tangential stiffness matrix, which is of importance in numerical applications,
is given explicitly.

Noting eqns (4), (14) and (16) can be combined to

(23)

where use has been made ofcqns (6) and (7). Now, by means ofeqns (5) and (8) and observing
that sk,ek' = sk,ek' and s"",Sm,e'k = s"",Sm,e'k -t~e"" we obtain

(24)
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(25)

where the tangential stiffness tensor is given by

(26)

and where the actual values of the material moduli depend upon the loading/unloading
criteria through eqns (17) and (18). With expressions (25) and (26), we have derived a form of
the constitutive equations, which directly relates the rate ofthe stress tensor to the rate ofthe
total strain tensor through the tangential stiffness tensor, which only depends on the current
state of material, Le. we have obtained a linearized form of the incremental constitutive
equations. The matrix formulation of eqn (25) directly applicable in numerical schemes is
easily obtained from eqn (24).

Let us now investigate the properties of D iJkl given by eqn (26). In accordance with the
symmetry of (1ij and sij' it appears that the conditions DiJki = DJikl = DJilk are always fulfilled.
To fulfil also the requirement of a symmetric tangential stiffness matrix, which is equivalent
to the condition D iJkl = DkIiJ , we must impose A 3 = B3 = 0 and A2 = B I • However, it will be
shown later that the inclusion of the material moduli A3 and B3 is very important for
modelling of frictional materials as these moduli reflect the influence of the third stress
invariant.

MATERIAL FORM-INVARIANCE

It is apparent that the constitutive theory proposed obeys all the more obvious axioms
like causality, determinism and admissibility related to an adequate theory, cf. Eringen[7].
However, as demonstrated by Bazant[8] , the additional requirement ofform-invariance is a
very important issue to which special attention must be paid, if a proper constitutive theory
is to be formulated. The fulfilment of this requirement is proven below for the constitutive
theory proposed here.

In general, the form-invariance principle states that the material response is
independent of the reference configuration. In the present paper, where we deal only with
initially isotropic materials, form-invariance requires that the constitutive equations remain
the same irrespective of the coordinate system. For a constitutive relation having the form of
eqn (25), this requirement infers that the most general form of the constitutive relation
becomes, cf. Refs [9,10]

aij = uobijtu + u I tij +'U2(1iiu + U3 biPmnt mn +a4((1imtmj + t mi(1mj)

+ Us(1im(1miu +a6(1mn(1iinm +a7(1mn(1Mbiikm

+ a8((1im(1mkt kJ + t im(1mk(1kJ) + a9(1mn(1ik(1kJt nm

+ a 1 O(1mn(1nk(1iJt km + a II (1mn(1nk(1il1rikm (27)

where the 12 functions ao, ... , a l1 , in general, depend on the invariants. Disregarding any
loading/unloading criteria, eqn (27) represents the most general hypoelastic model. A
comparison with eqn (24) shows immediately that we must have all = 0, if eqn (24) should
is a special case ofeqn (27). Using eqn (4), the expression above can then, after some algebra,
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be rewritten as

Ujj = (a l +2a40'0 +2asO'o)eij + [(as +a90'0)Sj",S",j + (a 2+2asO'o +a60'0 + 2a90'~ +al OO'~)Sjj

+ (aO +a20'0 + aJO'O +aSO'~ +a60'~ +a70'~+ a90'~ + a l OO'~)<5ij]ekk

+ [(a6+2a90'0 +2a l OO'O)Sij + (a3 +a60'0 +2a70'0 +a90'~ +2a l OO'~)<5ij +a9SikSkJS",ne...n

+ [al OSjj + (a7 +a l OO'O)<5 jj]Sk",S""e'k + (a 4+2asO"o)(si",i"'j +Sj",e"'i)

1331

(28)

We shall now continue to investigate whether eqn (28) contains the formulation given by eqn
(24). From the last term of eqn (28) it appears that we must have as = 0, which from the
second last term, infers that a4 = O. From the coefficient of s",ne",n' it appears that we must
choose a9 = O. From the term Sj",S",j present in the coefficient in front ofeu, a9 =0 infers that
as = O. Thus, in conclusion we must choose

which reduces eqn (28) to

Ujj = al iij + {(a2 +a60'0 +a l oO'~)sij + [ao + (a2 +a3)0"0 + (a6+ a7)0"~ +a l oO"~]<5ij}tkk

+ {(a6+2a l oO'o)sij + [a3 + (a6+2a7)0'0 +2a l oO'~]<5ij}s",ne","

+ [a I OSjj + (a7 +al oO"O)<5ij]Sk",S",lt'k'

A comparison with eqn (24) shows that if we choose

(29)

(30)

Bi = al (35)

B3 = 3alot~ (37)

then eqn (24) becomes identical with eqn (30), i.e. it has been proven that the proposed
constitutive theory is formulated in such a way that it also satisfies the form-invariance
requirement. This, in combination with the consistent loading/unloading criteria, means
that the theory proposed fulfils all the formal requirements that can be related to a proper
constitutive theory. Moreover, the constitutive formulation proposed takes a particularly
simple form in terms of invariants, cr. eqn (1), thereby facil~tating the identification of the
material moduli.

Disregarding the loading/unloading criteria, it appears that the proposed constitutive
theory becomes identical to a hypoelastic formulation of the third grade. It is ofconsiderable
interest, however, that the theory contains all the zero grade terms, but only some ofthe first,
second and third grade terms. If A 3 = B3 = 0 then eqns (33) and (37) show that the
formulation reduces to a second grade hypoelastic model.

CHANGE OF THIRD STRESS INVARIANT-INVERSION OF EQUATIONS

The exposition above contains in principle all information regarding the constitutive
theory proposed. However, to be able to investigate the implications of this theory in more
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detail, it becomes convenient to derive some additional expressions for the constitutive
theory at the invariant level.

The rate of the first two stress invariants ao and !o is given directly by eqn (I). An
expression for the third stress invariant is given by J 3 defined by eqn (9), from which we
obtain j 3 = SjkSkiSij' Therefore, to obtain an expression for the rate of the third stress
invariant, we multiply eqn (14) by SjkSki and obtain

(38)

where eqn (7) has been utilized. Defining the moduli C1 , C2, C3 by

(39)

as well as the rate of the invariant stress measure J by

(40)

we can combine eqns (1) and (38) as follows

(41)

At the failure surface for the material in question, the stresses take their peak values.
From eqn (41) this infers that at failure the determinant ofthe coefficient matrix must be zero
thereby providing a failure condition. The determinant is given by

(42)

where eqns (39) and (10) have been utilized. Moreover, we shall later need to express the
strain rate invariants eo, e, and IV in terms of the stress rate invariants, Go, To, and j, This can
be accomplished by inverting eqn (41), whereby we obtain

-A2C3 +A3C2

A1C3 -A3C1

-A1C2 +A2C1

(43)

It appears readily from this expression that by proper choices of the material moduli, we are
able to model volume compaction and dilation.

Moreover, the existence of the invariant expression (43) implies that it is simple to invert
even the constitutive relation (25) and obtain the tangential compliance tensor explicitly.
Using expression (43), the strain rate invariants in eqns (14) and (16) can be eliminated so
that elj and eo can be expressed in terms ofstresses and stress rates. Using eqns (4) and (8), it is
then easily shown that

(44)
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where the tangential compliance tensor Cijkl is given by
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REFORMULATION OF THE LOADING FUNCTIONS IN STRESS SPACE

The loading functions Ld and Lv were expressed previously in terms of strain rate
quantities, cf. eqns (19) and (20), which, in fact, is very convenient because it makes possible
consideration ofstrain softening. However, to obtain a physical interpretation ofthe loading
functions, it is advantageous to apply stress rates instead of strain rates, as this permits
interpretation in the usual stress space.

For this purpose we observe that expression (43) together with eqns (17), (18), and (39)
provide expressions for eo, eand w. Using these expressions in the loading functions given by
eqns (19) and (20), we obtain after lengthy, but trivial calculations that the deviatoric loading
function Ld becomes

Ld = - d~t {B{BiB~ +Pl(A2B~ -A~CB2)+Pl(A3B~ -A~CB3<~JGO

+[Bi(AiB2+A~CB2- A2B'I)+ PIAi(A3B2-A2B3) ~~}o

+ [Bi(A~B3 - A3B1+ A(I B3)+ PIA; (A 2B3- AjB~)]j}. (46)

Likewise, the volumetric loading function L" is given by

L - _1 {Be [A'CBC+ A'CB'c - A' B' + (A'CB' - A' B' )J3J .
v - det 2 1 2 1 2 2 1 1 3 3 1 ,~ aO

+[AiA2Bi +P2Bi(A'2B~ -A~B~)+ A;(A2Bj - AjB~<~}o

+ [A; (A3Bi -A2B3+ A3B2)+ P2Bi(A3BI-A'ICB3)]J}. (47)

Whereas the influence of moduli Ai and Bi is readily interpreted and moduli A2and B1 are
responsible for the coupling between deviatoric and volumetric response, we are now in a
position to evaluate the influence of moduli A3 and B3• Suppose we have neutral deviatoric
loading, i.e. ~ = O. Furthermore, suppose that the loading is purely deviatoric, i.e. Go = O.
From eqn (46) we then obtain

[Bi(AiB2+ A~cB2-A2BD+PI Ai(A3B2-A2B3)~~}o

+[Bi(A~B3-A3B~ + AiB3)+PIAi(A2B3-A3B2)]J = O. (48)

It appears that if A'3 = B3= 0, i.e. A3 = B3 = 0, then the solution to eqn (48) becomes
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Fig. I. Deviatoric plane. Inconsistency offailure curve for frictional materials and deviatoric loading
curve I=circle) when AJ = BJ = O.

i o =0, i.e. the neutral deviatoric loading curve in the deviatoric plane in question becomes a
circle. Therefore, only when moduli A3 and B3 are different from zero, is it possible to
simulate loading curves in the deviatoric plane that depend on the third stress invariant.
Consequently, inclusion of moduli A 3 and B3 is of utmost importance when modelling the
behaviour of frictional materials. Similar conclusions can be derived from the expression for
the volumetric loading function.

If A3 = B3 = 0, then eqn (42) provides at failure A1B2-A2B1 = 0. It appears that by
letting these moduli depend on the third stress invariant, we obtain a failure criterion which
also depends on the third stress invariant. However, the discussion above shows that for
A 3 = B 3 = 0, the neutral loading surfaces will not depend on the third stress invariant
implying an inconsistency in the sense that the circular deviatoric loading curve might
intersect the failure curve. This situation is sketched in Fig. 1, and it emphasizes the
requirement for inclusion of moduli A 3 and B3 when modelling frictional materials.

Let us now pursue the investigation of the surfaces in the stress space corresponding to
neutral deviatoric loading, i.e. Ld = 0, and neutral volumetric loading, i.e. Lv = 0. These
expressions are readily obtained from eqns (46) and (47), but a particular simple form results
if we choose

A2B3= A3B'2.

This choice infers that neutral deviatoric loading Ld =°becomes

(
A' J)BC B' + (A' B' _A'CB'C) 1+_3..2

2 1 PI 2 1 1 2 A' r 3 A'
i + 2 0 eT +_3 J - °
o AC B'c-A' B' +A'cB'c 0 A' -

1 2 2 1 1 2 2

and neutral volumetric loading 4 = 0 corresponds to

A'CBC-(A' B' -A'CB'C)(l+ A3J 3
)

1 2 2 1 1 2 A' ? A'
. • 20. 3J 0
ro+ A~A2+P2(A2Bl-A1CB'D O'o+A2 = .

(49)

(50)

(51)

Comparison of eqns (50) and (51) shows that only the coefficient in front of eTo differs. This
interesting aspect means that the two neutral loading surfaces have the same form in the
deviatoric plane and that the surfaces, in general, intersect each other in a plane
characterized by eTo = 0, as illustrated in Fig. 2.

Now, tests for frictional materials[ll-13] demonstrate that the failure surface in the
stress space is highly insensitive to the particular stress path. This suggests that it is
advantageous, in some way or another, to incorporate the features of the stress failure
surface into the constitutive model. One way of achieving this is to choose the material
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Fig. 2. Appearance of the neutral volumetric surface and the neutral deviatoric surface, which
intersect each other in a plane curve located in the deviatoric plane. The neutral deviatoric surfacecan

be made affine to the failure surface, as shown below.

moduli so that the surface, which corresponds to neutral deviatoric loading, becomes affine
to the stress failure surface. For a given failure criterion, which is expressed by the three stress
invariants, this modulus calibration is easily performed, as demonstrated in the next section.

CALIBRATION TO A FAILURE CRITERION FOR CONCRETE

We shall make use of the following failure criterion, which has been shown to be in close
agreement with experimental data for concrete[14, 15]

(52)

where J2 = 3r~/2 and I, = 3ao. Moreover

{

K 1 cos [1 arccos (K 2 cos 30)];

),(9) = 1t

K 1 cos [j-1arCCos (-K 2 COS39)}

for cos 30 ~ 0

for cos 39 ~ 0
(53)

and A, B. K I' and K 2 are nonnegative dimensionless parameters (0 ~ K 2 ~ I), whereas (1<

denotes the uniaxial compressive strength value of the concrete (0'< > 0). In addition, the
invariant cos 30 is defined by

(54)

Note that the dependence of the O-angle disappears if. K2 =0, which infers that
A. = J3 K1/2. It follows that eqn (52) reduces to the classical criteria of Drucker and
Prager[16] for K 2 = A =0 and of von Mises for K 2 = A = B =O.

Now, eqn (52) determines the stress state at failure; however, for any stress state there
exists a positive a.-value so that the following equation is fulfilled

3A (to)2 )(3) to 0'0- - + - )'(9)-+3B--l =0
2 0'. 2 a. a.

(55)

where we have used J 2 = 3t~/2 and II = 30'0' The surface determined by this equation is
affine to the failure surface.
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In the following we need an expression for ;: and from eqn (53) we obtain

f

K I K2 sin [1 arccos (K 2cos 30)J (1 cos 30.
3 (1-K~cOS238)112 ot'

;: = l [7t 1 ]sin -3 - -3 arccos (- K2cos 38)
K I K 2 ocos 38
-3- (1- K~ cos238)112 at:

for cos 30 ~ 0

for cos 38 ~ 0

(56)

where t denotes the loading parameter. Using the identity sin 2x = l-cos2x we obtain by
means of eqn (53)

• (XI acos38
A. = J3 at ; for all cos 38 values

where the nonnegative dimensionless quantity (XI is defined by

(57)

(58)

It appears that (XI is completely determined by the current stress state. Using eqn (54) we
obtain

(59)

Let us also define the following dimensionless quantity

(60)

As a. for any stress state is determined so that eqn (55) is fulfilled, then (X2 is also determined
by the current stress state.

Keeping the a.-value fixed, eqn (55) can now be differentiated and we obtain by means
of eqns (40), (59), and (60)

(61)

The objective of the derivations above is to choose the material moduli in such a way
that the neutral deviatoric loading surface becomes affine with the failure surface in question.
This is achieved by making eqns (50) and (61) identical. This implies the following
restrictions on the material moduli.

BeB' +p (A' B' _A,eB,e)(1+ A3 J 3 )2 I I 2 I I 2 A' 3
2 'to B

(62)

(63)

Due to eqn (49), the last expression infers that B3/B'2 = (XI/(X2' Suppose that the 8­
dependence is ignored, i.e. according to eqn (53) we have K 2 = 0 implying that (XI = O. From
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Fig. 3. Affinity between failure curve and neutral deviatoric loading curve in the deviatoric plane.
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above we obtain A3= B3= 0, i.e. A3 = B3 = °in accordance with the previous discussion.
Suppose instead that the failure surface is taken to be independent of the hydrostatic stress
component. i.e. B = O. It appears from eqn (62) that A~c = Bit = °provides a solution;
which, in turn. means that A~ = O. However, these restrictions on the moduli infer that the
response to purely hydrostatic loading becomes linear in accordance with general
expectations for the response of pressure insensitive materials. Thus, the restrictions
imposed by eqns (62) and (63) seem to be physically reasonable and, in addition, they imply
that the neutral deviatoric loading surface becomes affine with the failure surface and at
failure, the two surfaces coincide. In the deviatoric plane, this aspect is illustrated in Fig. 3.

As previously discussed, only the coefficient in front of Go differs for the two neutral
loading surfaces given by eqns (50) and (51) and this coefficient determines the slope of the
neutral curve in a meridian plane. For the neutral deviatoric surface the slope is affine to the
slope of the failure curve as given by eqn (61). It appears that the slope of the neutral
volumetric loading surface can be made positive by a proper choice of material functions,
inferring that this surface takes the form ofa "cap", a concept often applied in soil plasticity.
This aspect as well as the affinity between the neutral deviatoric loading surface and the
failure surface already have been anticipated in the layout of Fig. 2.

It appears that it is fairly simple to calibrate the material moduli so that advantage can
be taken of the knowledge of a failure criterion. The fact that the present calibration also
contains the Drucker-Prager and von Mises criteria makes the formulation quite appealing.

DIRECTION OF THE INCREMENTAL STRAIN VECTOR

In a further attempt to discuss some of the principal features of the proposed
constitutive theory, it might be of interest to investigate the direction of the nonelastic, i.e.
plastic part of the incremental strain vector. For this purpose it is convenient to consider the
deviatoric and volumetric parts of the strain vector separately. From eqns (21) and (22) we
obtain

(64)

(65)

where the superscript p refers to plasticity. From eqn (64) it appears that f\'j is colinear with
Slj' As the deviatoric loading surface, in general, has a triangular shape, cr. Fig. 3, it means
that the model. in this respect, corresponds to nonassociated plasticity theory. However, the
colinearity of f\'j and sij seems to be in perfect agreement with results obtained for concrete, cf.
Fig. 4, and in reasonable agreement with results obtained for sand, cf. Fig. 5.

Moreover, in accordance with well-established evidence for frictional materials, it

SAS 22: 11-1.
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Fig. 4. Plastic strain directions for concrete for nonproportional loading in the deviatoric plane
(0'0 = -28 MPa). Stankowski and Gerstle[4].

HOSTUN SAND

Fig. S. Strain increments for Hostun sand at failure for proportional loading in the deviatoric plane
(0'0 = -0.3 MPa). Darve and Labanieh[I7J.

appears from eqn (65) that the plastic volumetric strain increment, in general, is also
nonassociated with the loading surfaces. Consequently, the features demonstrated above in
combination with the general properties of proposed theory seem to all correspond to
observed behaviour offrictional materials. On this background, it is of interest to compare the
present framework with some previous formulations. This comparison is performed below.

SIMPLIFICATIONS AND COMPARISONS WITH OTHER CONSTITUTIVE THEORIES

As outlined above, the present formulation seems to be quite general and to be able to
make a comparison with previous theories, significant simplifications must be invoked.

Let us first assume that the loading surfaces degenerate into one and the same surface.
This is achieved if Ld and Lv become proportional which, according to eqns (19) and (20),
requires that B'l/A~c = B2c/A2= B3/A3, i.e.

(66)

where we have already taken advantage of the last equation in the previous discussion, cf.
eqn (49). Use ofeqn (66) in expression (20) for Lv infers Lv = - A2Ld / B~ which, by means of
eqns (21) and (22), yields

(67)

(68)
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These equations correspond to an isotropic hardening, nonassociated plasticity formulation
with the yield surface (L~ = 0) depending on all three stress invariants.

Let us now specialize one step further and assume that

A3= B3= 0 (69)

which, according to eqns (17) and (18), infers that A3 = B3 = 0, i.e. the influence of the third
stress invariant on the yield surface is neglected. Using eqns (66) and (69), it is easily shown
that the determinant given by eqn (42) degenerates to

and Ld , as given by eqn (46), reduces to

(70)

i..J=
B'I.82O'o+A;B2'To

AC

I B2 +.82Ac
l

(71)

Therefore, our yield surface now corresponds to a generalized Drucker-Prager surface
depending only on CTo and .0' This, in turn, means that the constitutive equations, eqns (67)
and (68), correspond to an isotropic hardening Drucker-Prager type of plasticity with
associated plastic deviatoric strains and nonassociated plastic volumetric strain. In fact, the
formulation given by eqns (67), (68), and (71) corresponds exactly to that proposed by
Rudnicki and Rice[18] for rock and later applied to soil by Nemat-Nasser and Shokooh[19]
and, essentially, also to concrete by Bazant and Kim[20]. Let us now investigate under
which conditions this formulation reduces to an associated generalized Drucker-Prager
plasticity theory. From eqns (67) and (68) we derive that the plastic strain rate is given by

llP. = _1 ( B2s..+ A2 (j ..)Ld
IJ B'2 Bi.o IJ A~ IJ

(72)

where L~ is expressed by eqn (71). For associated plasticity, the classical formulation is, cf.
HiII[21]

. of
llP.= hf-

IJ aCTij
(73)

where f is the yield surface and h is a hardening parameter. If eqns (72) and (73) are to be
identical we must require

(74)

where k is a proportionality factor. Using the expression for Ld given by eqn (71) as well as
1= aij of/oCT/j , the requirements above infer

(75)

i.e. we have shown that for this restriction on the material moduli, eqns (67), (68), and (71)
correspond to an associated, generalized Drucker-Prager format.

A further simplification is obtained by assuming also that A 2 = 0 holds. According to
eqn (75) we have B1= 0, which, by means of eqn (66), infers that A~ = 0, Le. A~ = BI = O.
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Consequently, for
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A 2 = 0, i.e. BI = A't = 0 and (76)

eqn (71) becomes Ld = -B~ioIB2 and eqns (67) and (68) reduce to

(77)

(78)

Observing that only the deviatoric loading influences the plastic strains and that the
volumetric behaviour is elastic, we have, in fact, achieved a fonnulation that is identical to
the classical isotropic von Mises plasticity theory. Noting that the equivalent von Mises
stress a, and the usual equivalent plastic strain rate e: are defined by a, = 3ro/J2 and i% =
(WllliW /2, it appears readily that if H denotes the plastic modulus defined by da,/d~ =H,
then

Be ­2- 1H +B'2 =
E

(79)

where the relation B'2 = 2G = E/(l +v) has been used (E is Young's modulus and v is
Poisson's ratio).

The reduction to classical von Mises plasticity follows when A2 = A3 == B1 = B3 =
A~ = 0, Le. the only remaining material moduli are Al = A'I and B2 = If2 +.8'2' With this
interpretation in mind we can evaluate the present formulation in a slightly different light. In
von Mises plasticity the nonlinearity is prescribed by a unique relation between the stress
invariant a, and the strain invariant ~. In the present formulation we express instead von
Mises plasticity by the invariant relation iTo = A'IEo corresponding to linear volumetric
behaviour and the invariant relation to = (8'2 +8'2)e describing the nonlinear deviatoric
response. It is ofconsiderable interest to observe that usually the von Mises plasticity theory
relies on a decomposition of the total strain into elastic and plastic parts, whereas we here use
an alternative description using total deviatoric strains by means of e. With this in mind, the
present general format can be viewed as a fonnulation where more and more invariants are
included in the "effective" stress-strain relations depending on how complicated the actual
material behaviour is, i.e. the present fonnulation seems to offer a quite natural extension of
the basic ideas of conventional plasticity theory. However, an extremely important
difference is that here we start directly with the stress-strain relations and then later add
appropriate loading/unloading criteria, whereas the traditional plasticity approach is to
envisage the size, shape and change of the yield surfaces. While this traditional approach is
extremely helpful when dealing with materials having easily detectable yield surfaces, like
mild steel, the present approach se~ms to be far more natural and advantageous when
dealing with materials having gradually changing nonlinear behaviour over most of their
loading range. In addition, the present formulation introduces loading and unloading
criteria in a very simple and convenient manner; and these criteria are applicable also in the
softening range. Moreover, contrary to nonnal plasticity theory where a decomposition of
the total strain in elastic and plastic strains is necessary, the present fonnulation works
always in tenns of total strains. This aspect seems to be of significant importance for large
strain analysis in which the decomposition into elastic and plastic strains is by no means
obvious.

It follows from the previous discussion that if the loading/unloading criteria are
dropped, the present fonnulation becomes one of hypoelasticity of third grade and as such it
contains some fonnulations proposed previously for frictional materials. In particular, the
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soil models of Romano[22] and Davis and Mullenger[23] emerge if A3 = B3 = 0, and if
A3 = B3 = B2 = 0 then the concrete model proposed by Coon and Evans[24] follows.
Considering loading in the Rendulic plane and putting A3 = B3 = A2 = B1 = 0, we recover
the variable moduli soil model of Nelson and Baron[25]. Moreover, the relations to the
octahedral formulations proposed for concrete[2-4] have already been touched upon in the
beginning of the paper.

Finally, if

(80)

then Ld = -B'2e and Lv = A2e. If A2 is allowed to vary, independently of whether
volumetric loading or unloading occurs, this means that the volumetric loading criterion is
deactivated and only the deviatoric loading criterion is of importance. Therefore, B'2
becomes the only material modulus that is influenced by loading and unloading. If Hi is
taken as a constant whereas Ai is allowed to vary, then the present formulation by a proper
choice of the material functions degenerates to the elastic-fracturing model proposed very
recently by Resende and Martin[t] for concrete and rock.

Consequently, the present theory seems to be of surprising generality as it contains
formulations ranging from nonassociated plasticity theory, associated theory, hypoelasticity
to clastic-fracturing theory. Even so, the derivation of the theory is rather straightforward.

CONCLUSIONS

A new theoretical framework for constitutive modelling offrictional materials has been
proposed. The basis of the theory is two very general relations between appropriately defined
stress and strain rate invariants. These invariant equations are then expanded so that the
relations between all the components of the stress and strain rate tensors are established.
This implies a linear relation between the stress rate tensor and the strain rate tensor defining
the tangential stiffness tensor. The tangential stiffness tensor can be used directly in
numerical applications, but it is shown, in general, to be nonsymmetrical.

The established incremental stress-strain relations are then augmented by appropriate
loading/unloading criteria and in accordance with the general behaviour of frictional
materials, these criteria include deviatoric as well as volumetric loading/unloading rules.
The proposed criteria are consistent in the sense that they fulfil the important continuity
requirement. Moreover, it was demonstrated that the deviatoric loading surface can easily
be calibrated to be affine with failure surfaces that depend on all three stress invariants.

Emphasis was given to a fundamental discussion of the general properties of the
proposed theory and it was shown that the theory fulfils all the formal requirements that a
properly formulated constitutive theory must obey. Despite the rather straightforward
derivation, it was also shown that the theory possesses the potential to model all the
important features of frictional material behaviour such as: influence of all three stress
invariants, coupling between deviatoric and volumetric response, dilatancy, softening and
different behaviour in loading and unloading.

Moreover, the proposed theory was demonstrated to contain a surprisingly large
number of both classical and nonclassical theories as special cases. In particular, it contains
formulations ranging from nonassociated plasticity theory, associated plasticity theory,
hypoelasticity to elastic-fracturing theory.

Finally, it is of considerable interest that the proposed theory does not rely upon a
decomposition of the total strains into elastic and plastic parts. Even though only small
strains have been considered in the present paper, this aspect seems to offer great advantages
when also kinematic nonlinearities are involved.
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